AI Face Detect API
CUTOS Face Recognition Service Features:
- Supports face register, search, unregister, and comparison.
Installation
npm install @cutos/ai-face-detect
Import Dependencies
import {Face} from '@cutos/ai-face-detect'
Model File Resource Path Configuration
1. Automatic Installation (Recommended)
When running npm install
, the installation script will automatically download the model files and copy them into the project directory:
public/cutos-ai-face-models/
No additional action is required from developers. Once installation is complete, the project can be used directly.
2. Manual Installation
If automatic installation fails or manual setup is preferred, follow the steps below:
(1) Locate the downloaded model files in the dependency package directory:
/node_modules/@cutos/ai-face-detect/cutos-ai-face-models/
(2) Copy this entire directory into the project path public/cutos-ai-face-models/
.
The final directory structure should look like this:
public/
├── cutos-ai-face-models/ # Model file directory
│ ├── blaze_face_short_range.tflite
│ ├── vision_wasm_internal.js
│ └── vision_wasm_internal.wasm
├── config.json
├── index.html
└── thumbnail.png
Face
Constructor, creates a face recognition service instance
const faceInstance = new Face();
Face.init
Initialize the face recognition gateway service
faceInstance.init(gwClient);
gwClient
: Object, instance of the face recognition gateway service.
Face.detectSingleFace
Detect a single face in the camera stream
faceInstance.detectSingleFace(videoElement);
- videoElement:
<video>
Element
Example:
//index.html
<video class="cam-video" autoplay muted playsinline id="cam"></video>
...
//main.js
const $cam = document.querySelector('#cam')
const result = faceInstance.detectSingleFace($cam);
console.log(result)
- Example return result:
{
"face": "",
"fullFrame": "",
"score": 0.9609517455101013
}
result.face
: The detected face image.result.fullFrame
: The original camera frame (Blob in base64).result.score
: Confidence score (0--1), recommended above 0.9 to consider detection successful.
Face.register
Register a face image
faceInstance.register(fullFrame)
fullFrame
:Base64 formatted image
Example:
const id = faceInstance.register('.../Z);')
console.log(id)
- Example return result:
"f956ac67-0dd8-4dc4-ae5b-55f37d99bc6b" //Returns ID after successful registration
Face.search
Search for a registered face
faceInstance.search(fullFrame)
fullFrame
:Base64 formatted image
Example:
const result = faceInstance.search('.../Z);');
console.log(result)
- Example return result:
{
"id": "f956ac67-0dd8-4dc4-ae5b-55f37d99bc6b",
"payload": {},
"score": 0.9953916239059821
}
result.id
: Matched ID.result.score
: Matching score.
Face.unregister
Unregister a face ID
faceInstance.unregister(id);
Example:
const id = faceInstance.unregister("f956ac67-0dd8-4dc4-ae5b-55f37d99bc6b");
console.log(id)
- Example return result:
"f956ac67-0dd8-4dc4-ae5b-55f37d99bc6b" //Returns ID after successful unregistration
Face.compare
Compare two faces
faceInstance.compare(image1, image2);
image1
: Base64 formatted image of face 1.image2
: Base64 formatted image of face 2.
Example:
const score = faceInstance.compare('...', '...');
console.log(score)
- Example return result:
0.9973043918609619 //Recommended above 0.9 to consider a successful match